ORIGAMI 1


ORIGAMI.















ORIGAMI.









ORIGAMI.
El arte de doblar papel se originó en China alrededor del siglo I o II d. C., llegó a Japón en el s. VI y se integró en la tradición japonesa. En el periodo Heian, desde 794 hasta 1185, el origami formó parte importante en las ceremonias de la nobleza, pues doblar papel era un lujo que solo podían darse personas de posición económica acomodada. Entre 1338 y 1573 del periodo Muromachi, el papel se volvió lo suficientemente barato para todos, y el estilo de origami servía para distinguir un estrato social de otro, por ejemplo, entre un samurái aristócrata y un campesino. La total democratización del arte solo ocurre entre 1603 y 1867, periodo Tokugawa, en donde se documenta la base del pájaro y la base de la rana en el libro Senbazuru Orikata en el año 1797.
El origami (折り紙) o papiroflexia es un arte que consiste en el plegado de papel sin usar tijeras ni pegamento para obtener figuras de formas variadas, muchas de las cuales podrían considerarse como esculturas de papel. En un sentido estricto, el origami es un tipo de papiroflexia de origen japonés que incluye ciertas restricciones (por ejemplo, no admite cortes en el papel, y se parte desde ciertas bases) con lo que el origami es papiroflexia pero no toda la papiroflexia es origami.
La particularidad de esta técnica es la transformación del papel en formas de distintos tamaños partiendo de una base inicial cuadrada o rectangular que pueden ir desde sencillos modelos hasta plegados de gran complejidad. En el origami se modela el medio que nos rodea y en el cual vivimos: Fauna y flora de todos los continentes, la vida urbana, herramientas de nuestra cotidianidad, animales mitológicos y un sinfín de otras figuras.
El origami se inició con el papel y se ha ido desarrollando con mucha rapidez desde finales de los 60 hasta nuestros días. Según Lafosse estamos en el momento histórico más importante de la historia de la papiroflexia. Se han descubierto y popularizado nuevas técnicas de diseño, que se han difundido gracias al Internet y las asociaciones de origami alrededor del mundo. La incorporación de las matemáticas es un tema nuevo, que antiguamente no se consideraba, y que ha adquirido fuerza en los últimos 30 años. Con la llegada de la informática a partir de la década de 1990 se han podido realizar optimizaciones del uso del papel y bases nuevas para figuras complejas, como los insectos.


TIPOS DE ORIGAMI.

Ejemplo origami de acción: Sapo saltarín
Origami de acción.
El origami no sólo representa figuras inmóviles, también existen objetos móviles donde las figuras pueden moverse de maneras ingeniosas. El origami de acción incluye modelos que vuelan, que requieren ser inflados para completarlos o que presionando o tirando de cierta región del modelo se consigue que la figura mueva un miembro. Algunos sostienen que, en realidad, sólo este último es realmente “reconocido” como origami de acción. El origami de acción, habiendo aparecido primero con el pájaro aleteador japonés tradicional, es bastante común. Un ejemplo son los instrumentalistas de Robert Lang; cuando se hallan las cabezas de las figuras en sentido contrario a sus cuerpos, sus manos se moverán, asemejándose a la acción de tocar música.
Origami modular (Kusudama)

Ejemplo de origami modular: Esfera
El origami modular consiste en poner una cantidad de piezas idénticas juntas para formar un modelo completo. Las piezas son normalmente simples pero el conjunto final puede ser complicado. Muchos de los modelos modulares de origami son bolas decorativas como el kusudama, sin embargo la técnica difiere en que el kusudama permite que las piezas sean puestas juntas usando hilo o pegamento.
La papiroflexia china incluye un estilo llamado "Origami 3D" donde una gran cantidad de piezas se juntan para hacer modelos elaborados. A veces se utilizan billetes para los módulos. Este estilo fue creado por algunos refugiados chinos mientras fueron detenidos en América y se conoce también como "Golden Venture" en honor al barco en el que viajaron.



Plegado en húmedo

Ejemplo plegado en húmedo: Toro
El plegado en húmedo es una técnica de origami para producir modelos con curvas finas en vez de pliegues geométricos rectos y superficies planas. Consiste en humedecer el papel para que pueda ser moldeado fácilmente. El modelo final mantiene su forma cuando se seca. Puede ser utilizado por ejemplo para producir modelos de animales de apariencia muy natural. Existe otra forma de realizar plegado en húmedo, se trata de colocar una capa de metilcelulosa al papel y esperar que esta seque. Una vez finalizado el modelo se humedece con agua para dar la forma final. En variantes se pliega sin tratamiento y con el modelo finalizado se trata con metilcelulosa para acercar las capas de papel en especial es extremidades de la figura.
Origami pureland
Se trata de un estilo en el que se necesita mucho cuidado y técnica en el cual solamente se puede hacer un pliegue a la vez y no se permiten pliegues más complejos como los invertidos. Todos los pliegues deben tener localizaciones directas. Fue desarrollado por John Smith en los años 70 para ayudar a plegadores novatos o a aquellos con habilidades motoras limitadas. A algunos diseñadores también les gusta el desafío de crear buenos modelos dentro de límites tan estrictos.
Teselados o Teselaciones

Ejemplo teselado: Teselación del remolino de Eric Gjerde
Esta rama del origami ha crecido recientemente en popularidad, pero tiene una historia extensa. Un teselado es una regularidad o patrón de figuras que cubre o pavimenta completamente una superficie plana sin dejar huecos ni superponer las figuras. Los teselados de origami se hacen normalmente con papel pero se pueden utilizar otros materiales que retengan el pliegue. La historia del vestir incluye teselados hechos en tela que han sido registrados desde la época de los egipcios.
Fujimoto, uno de los primeros maestros japoneses del origami, publicó libros que incluían teselados y en los años 60 hubo una gran exploración de los teselados por Ron Resch. Chris Palmer es un artista que también ha trabajado extensivamente con los teselados y ha encontrado maneras de crear teselados de origami detallados a partir de la seda. Robert Lang y Alex Bateman son dos diseñadores que utilizan programas de computadora para diseñar teselados de origami. El primer libro estadounidense sobre el tema fue publicado por Eric Gjerde y la primera convención internacional fue realizada en Brasilia (Brasil), en 2006. Desde entonces, el campo se ha ido ampliando rápidamente. Hay numerosos artistas de teselados, incluyendo Chris Palmer (EE. UU.), Eric Gjerde (EE. UU.), Polly Verity (Escocia), Joel Cooper (EE. UU.), Christine Edison (E.E.U.U.), Ray Schamp (EE. UU.), Roberto Gretter (Italia), Goran Konjevod (EE. UU.), Christiane Bettens (Suiza), Carlos Natan López (México), Jorge C. Lucero (Brasil) cuyos trabajos son geométricos y representativos.
Origami según la pedagogía
Toda innovación del ser humano es para beneficio de él mismo, pese a que no se tenga en mente, para bien o para mal. El origami no es la excepción, pues si se analiza desde una perspectiva más objetiva, se encuentra en los lugares menos pensados, como la pedagogía.
El origami es una gran ayuda en la educación, trayendo a quien lo ejercita grandes beneficios y grandes cualidades, no sólo a los estudiantes que lo realicen, sino también le será bueno a cualquier persona. Pocos docentes, o responsables de políticas educativas saben que el plegado de papel es una herramienta con historia en la escuela argentina desde el siglo 19​. Algunos de sus beneficios son:
  • Desarrollar la destreza, exactitud y precisión manual, requiriendo atención y concentración en la elaboración de figuras en papel que se necesite.
  • Crear espacios de motivación personal para desarrollar la creatividad y medir el grado de coordinación entre lo real y lo abstracto.
  • Incitar al alumno a que sea capaz de crear sus propios modelos.
  • Brindar momentos de esparcimiento y distracción.
  • Fortalecimiento de la autoestima a través de la elaboración de sus propias creaciones.
Si se incentiva en un niño el trabajo manual desde pequeño, seguramente crecerá desarrollando habilidades artísticas y estará en capacidad de ubicar espacialmente un objeto cualquiera en un papel, acción que muchos niños no pueden hacer, precisamente porque no potenció en los primeros años de su vida el trabajo manual.
Lo ideal es que comiencen una actividad manual a edad temprana, ya que está comprobado que el entrenamiento de los dedos de un bebé acelera el proceso de maduración del cerebro, porque el ejercitar el movimiento de los dedos de ambas manos es realmente una base de desarrollo bilateral del cerebro y el adelanto del desarrollo intelectual, aprovechando que el cerebro está en su mayor plasticidad.
El trabajo de coordinación de ambas manos, el trabajo activo de la inteligencia y la atención es necesaria en el desarrollo y en el empleo del origami porque necesita la memoria, la imaginación y el pensamiento. Como se envuelven las manos activamente en trabajo, hay un masaje natural en la punta de los dedos por turnos saludablemente, afectando el equilibrio dinámico de los procesos de excitación en la corteza cerebral, frenando en las áreas corticales del cerebro. El espectro de movimientos de las palmas y dedos también se extiende por el impulso motor de las zonas de la corteza de los largos hemisferios que están activados. Las ricas comunicaciones del analizador del impulso con varias estructuras del cerebro, permite la actividad se transfiera de últimas. El trabajo de coordinación con las manos, requiere suficiente actividad del cerebro y un armonioso trabajo con las diferentes estructuras.
El origami por su naturaleza es un arte para ambas manos y da una compensación directa en satisfacción de una cierta condición creadora, es por ello que esta técnica servirá de soporte en la formación integral del profesional, adquiriendo así nuevas formas de comunicarse con los demás, e implícitamente crear un ambiente que le permita interactuar con una población determinada.

Origami según la psicología
Ahora relacionemos la rama de la pedagogía con su compañera de siempre: La psicología.
Se ha comprobado que la papiroflexia ayuda a los problemas psíquicos y psicológicos, ya que el estar concentrado realizando una actividad manual ayuda al desahogo, estimula los procesos mentales que, su finalidad es alejar al paciente de sus obsesiones y temores. En algunas universidades israelíes se realizan estudios vinculados con estudiantes que presentan déficit atencional y que son fuertemente estimulados mediante el mecanismo de doblar papel; en el Hospital Carlos Holmes Trujillo, de Cali, este arte se está utilizando desde hace unos años en el tratamiento de niños con problemas emocionales como dificultades de atención, expresión e hiperactividad.
La papiroflexia utilizada como herramienta o como terapia, en una sesión, se comparten sentimientos y conocimientos, ayuda a resolver los problemas, se experimenta una comunicación no verbal, un escenario de metas u objetivos, una oportunidad de un acercamiento no amenazante, un apoyo psicológico (llevar al sentimiento de la aceptación cuando se toma tiempo para demostrar lo positivo), una oportunidad para disfrutar y relajar un futuro pasatiempo, entre otras experiencias que se viven cuando se aplica el origami para la rehabilitación del paciente.

Matemáticas en el origami.

Teorema de Maekawa.
Ya desde la misma invención del papel se estaba haciendo ciencia sin saberlo, por casualidad, pero la tecnología, buscaba por necesidad un producto flexible y duradero para escribir. Tratando de encontrar sus funcionalidades le inspiró al hombre este invento.
El origami también tiene una vertiente científica, dependiendo de las preferencias de cada plegador, o de su sistema de creación. Los pliegues no son más que operaciones de simetría, a veces bastante complejas, y pueden ser ideadas y estudiadas metodológicamente en términos geométricos. El carácter matemático que pueda tener el plegado de papel no está reñido con el lado artístico, aunque tampoco tiene por qué coincidir. Por ejemplo del aspecto científico del origami, podemos mencionar a los aficionados que se dedican a demostrar teoremas geométricos utilizando sólo el papel y las hipótesis a punto de ser teoremas, incluso hay trabajos publicados sobre la resolución de ecuaciones de tercer grado sólo doblando el papel. Como consecuencia lógica de este campo es la versatilidad que ha dado el origami a la enseñanza en las clases de matemáticas a nivel preuniversitario. Además, el origami ofrece un ingrediente especial, en tanto se incentive al practicante a crear sus propios modelos, se estará despertando y fomentando la curiosidad científica, ya que, como las matemáticas, el origami es infinito.
En los últimos 30 años se han realizado grandes avances en el plegado de figuras por la incorporación de artistas con conocimiento matemáticos, los cuales han creado teoremas y técnicas para diseñar de la forma más eficiente posible con respecto al uso del papel. Es sorprendente lo tardío de estos avances ya que muchos de los teoremas son problemas resueltos y conocidos en el campo de la geometría. Otros como el uso del lagrangeano para minimizar una función sujeta a restricciones son ampliamente conocido desde muchísimos años atrás, pero que no había sido utilizada para resolver diseños de figuras plegadas en papel. Inicialmente los artistas probaban a dar con la figura según su experiencia, ocupando bases típicas sin recurrir a las matemáticas. Actualmente basta aplicar una metodología específica para llegar a nuevas formas. Esta metodología se establece con ayuda de teoremas que resumen lo que es o no es posible llevar a cabo.
Se han realizado numerosos estudios matemáticos acerca del arte del plegado de papel papiroflexia u origami. Los aspectos que han despertado interés matemático incluyen la capacidad de aplastar sin dañar una determinada figura de papel (problema conocido como flat-foldability, o doblez plana), y el uso de dobleces de papel para resolver ecuaciones matemáticas.
Se ha demostrado que algunos problemas geométricos de construcción clásicos, como trisecar un ángulo cualquiera o duplicar el volumen de un cubo cualquiera, no se pueden resolver utilizando regla y compás, pero se pueden resolver bastante fácilmente con unos pliegues de papel. Se pueden realizar pliegues de papel para resolver ecuaciones de hasta cuarto grado y ecuaciones polinomiales – las cuales sólo contienen términos del tipo anxn– (los axiomas de Huzita-Hatori son una importante contribución a este campo de estudio).
Como resultado del estudio del origami a través de la aplicación de principios de geometría, métodos como el Teorema de Haga han permitido doblar precisamente el lado de un cuadrado en tres, cinco, siete y nueve partes. Otros teoremas y métodos han permitido derivar otras formas a partir de un cuadrado, tales como triángulos equiláteros, pentágonos, hexágonos, y rectángulos de características especiales tales como el rectángulo dorado o el rectángulo de plata.
El problema del origami rígido, que trata los pliegues como líneas que unen dos superficies planas rígidas tales como pletinas, tiene gran importancia práctica. Por ejemplo, el pliegue de mapa de Miura es un pliegue rígido que se ha utilizado para desplegar grandes paneles solares de satélites espaciales.
La obtención de un modelo plano a partir de un patrón arrugado es un proceso que Marshall Bern y Barry Hayes han demostrado que es NP-completo. Se discuten referencias adicionales y resultados técnicos en la Parte II de Geometric Folding Algorithms.
La función perdida de doblar un papel en dos en una única dirección se ha determinado comoL = π t 6 ( 2 n + 4 ) ( 2 n − 1 ) {\displaystyle L={\frac {\pi t}{6}}(2^{n}+4)(2^{n}-1)} , donde L es la longitud mínima del papel (u otro material), t es el grosor del material, y n es el número de pliegues posibles. Esta función fue publicada por Britney Gallivan en 2001 (por entonces todavía estudiante de secundaria, que logró doblar una hoja de papel por la mitad 12 veces. Hasta entonces se había creído popularmente que el papel de cualquier tamaño no podía doblarse más de 8 veces.
Algunos de los teoremas son:
1.   Teorema de Maekawa: señala que la diferencia entre el número de montes y valles para conseguir una superficie plana debe ser siempre 2.
2.   Teorema de Kawasaki: La suma de todos ángulos alternos (todos los impares o pares) alrededor de una cúspide formada por pliegues debe ser 180 grados
También existen axiomas relacionados con la geometría del origami definidos por Humiaki Huzita, basados en 6 pliegues básicos que permiten analizar la geometría de cualquier origami, a los que se añadió actualmente un séptimo axioma:
1.   Axioma 1: Dados dos puntos P y Q se puede realizar el pliegue que los une. Un único pliegue pasa por 2 puntos P y Q específicos
2.   Axioma 2: Dados dos puntos P y Q se puede realizar el pliegue que sitúa a P sobre Q. En otras palabras un único pliegue lleva a un punto P sobre un punto Q.
3.   Axioma 3: Dado un punto P y una recta r se puede realizar el pliegue perpendicular a r que pasa por P
4.   Axioma 4: Dadas dos rectas r y s se puede realizar un pliegue que sitúe a r sobre s.
5.   Axioma 5: Dados dos puntos P y Q y una recta r podemos realizar un pliegue que sitúe a P sobre r y pase por Q.
6.   Axioma 6: Dados dos puntos P y Q y dos rectas r y s se puede realizar un pliegue que sitúe a P sobre r y a Q sobre s.
7.   Axioma 7: Dados un puntos P y dos rectas r y s se puede realizar un doblez perpendicular a r que coloca al punto P sobre la línea s.
Teorema de Haga Es posible encontrar fácilmente la tercera parte de una hoja de papel. Basta doblar una esquina inferior derecha hacia la mitad del segmento superior del cuadrado. Al hacer un pliege la intersección de un borde con otro mostrará la tercera parte de un lado. ​
El origami además de crear sus propias reglas relacionadas a la geometría euclidiana, también brinda a la educación una herramienta importante para mejorar las capacidades de concentración, memoria, análisis y desarrollo de conceptos geométricos por medio de la activación del pensamiento lógico-espacial y el desarrollo de las destrezas psicomotrices.




SIMBOLOGÍA ORIGAMI.